Copied to
clipboard

G = C42.93D6order 192 = 26·3

93rd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.93D6, (C4xD12):9C2, C4:C4.270D6, (C4xDic6):9C2, (S3xC42):18C2, D6:Q8:50C2, D6.1(C4oD4), Dic3:D4.6C2, (C2xC6).72C24, C22:C4.96D6, C42:C2:12S3, C42:2S3:30C2, D6.D4:48C2, C23.9D6:52C2, Dic3.Q8:44C2, (C22xC4).209D6, C12.255(C4oD4), C4.139(C4oD12), (C2xC12).147C23, (C4xC12).233C22, D6:C4.143C22, Dic3.2(C4oD4), C23.8D6:48C2, C23.94(C22xS3), C23.11D6:48C2, (C2xD12).207C22, C4:Dic3.292C22, (C22xC6).142C23, C22.101(S3xC23), (C2xDic3).25C23, Dic3:C4.152C22, (C22xS3).165C23, (C22xC12).377C22, C3:2(C23.36C23), (C4xDic3).196C22, (C2xDic6).230C22, C6.D4.95C22, (C4xC3:D4):52C2, C4:C4:S3:49C2, C6.29(C2xC4oD4), C2.11(S3xC4oD4), C2.31(C2xC4oD12), (S3xC2xC4).290C22, (C3xC42:C2):14C2, (C3xC4:C4).308C22, (C2xC4).150(C22xS3), (C2xC3:D4).102C22, (C3xC22:C4).112C22, SmallGroup(192,1087)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.93D6
C1C3C6C2xC6C22xS3S3xC2xC4S3xC42 — C42.93D6
C3C2xC6 — C42.93D6
C1C2xC4C42:C2

Generators and relations for C42.93D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, ac=ca, ad=da, cbc-1=a2b, dbd-1=b-1, dcd-1=c5 >

Subgroups: 552 in 234 conjugacy classes, 99 normal (91 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C2xC42, C42:C2, C42:C2, C4xD4, C4xQ8, C4:D4, C22:Q8, C22.D4, C4.4D4, C42.C2, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C2xC3:D4, C22xC12, C23.36C23, C4xDic6, S3xC42, C42:2S3, C4xD12, C23.8D6, C23.9D6, Dic3:D4, C23.11D6, Dic3.Q8, D6.D4, D6:Q8, C4:C4:S3, C4xC3:D4, C3xC42:C2, C42.93D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, C4oD12, S3xC23, C23.36C23, C2xC4oD12, S3xC4oD4, C42.93D6

Smallest permutation representation of C42.93D6
On 96 points
Generators in S96
(1 17 44 70)(2 18 45 71)(3 19 46 72)(4 20 47 61)(5 21 48 62)(6 22 37 63)(7 23 38 64)(8 24 39 65)(9 13 40 66)(10 14 41 67)(11 15 42 68)(12 16 43 69)(25 55 90 74)(26 56 91 75)(27 57 92 76)(28 58 93 77)(29 59 94 78)(30 60 95 79)(31 49 96 80)(32 50 85 81)(33 51 86 82)(34 52 87 83)(35 53 88 84)(36 54 89 73)
(1 28 38 87)(2 94 39 35)(3 30 40 89)(4 96 41 25)(5 32 42 91)(6 86 43 27)(7 34 44 93)(8 88 45 29)(9 36 46 95)(10 90 47 31)(11 26 48 85)(12 92 37 33)(13 54 72 79)(14 74 61 49)(15 56 62 81)(16 76 63 51)(17 58 64 83)(18 78 65 53)(19 60 66 73)(20 80 67 55)(21 50 68 75)(22 82 69 57)(23 52 70 77)(24 84 71 59)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 57 7 51)(2 50 8 56)(3 55 9 49)(4 60 10 54)(5 53 11 59)(6 58 12 52)(13 96 19 90)(14 89 20 95)(15 94 21 88)(16 87 22 93)(17 92 23 86)(18 85 24 91)(25 66 31 72)(26 71 32 65)(27 64 33 70)(28 69 34 63)(29 62 35 68)(30 67 36 61)(37 77 43 83)(38 82 44 76)(39 75 45 81)(40 80 46 74)(41 73 47 79)(42 78 48 84)

G:=sub<Sym(96)| (1,17,44,70)(2,18,45,71)(3,19,46,72)(4,20,47,61)(5,21,48,62)(6,22,37,63)(7,23,38,64)(8,24,39,65)(9,13,40,66)(10,14,41,67)(11,15,42,68)(12,16,43,69)(25,55,90,74)(26,56,91,75)(27,57,92,76)(28,58,93,77)(29,59,94,78)(30,60,95,79)(31,49,96,80)(32,50,85,81)(33,51,86,82)(34,52,87,83)(35,53,88,84)(36,54,89,73), (1,28,38,87)(2,94,39,35)(3,30,40,89)(4,96,41,25)(5,32,42,91)(6,86,43,27)(7,34,44,93)(8,88,45,29)(9,36,46,95)(10,90,47,31)(11,26,48,85)(12,92,37,33)(13,54,72,79)(14,74,61,49)(15,56,62,81)(16,76,63,51)(17,58,64,83)(18,78,65,53)(19,60,66,73)(20,80,67,55)(21,50,68,75)(22,82,69,57)(23,52,70,77)(24,84,71,59), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,57,7,51)(2,50,8,56)(3,55,9,49)(4,60,10,54)(5,53,11,59)(6,58,12,52)(13,96,19,90)(14,89,20,95)(15,94,21,88)(16,87,22,93)(17,92,23,86)(18,85,24,91)(25,66,31,72)(26,71,32,65)(27,64,33,70)(28,69,34,63)(29,62,35,68)(30,67,36,61)(37,77,43,83)(38,82,44,76)(39,75,45,81)(40,80,46,74)(41,73,47,79)(42,78,48,84)>;

G:=Group( (1,17,44,70)(2,18,45,71)(3,19,46,72)(4,20,47,61)(5,21,48,62)(6,22,37,63)(7,23,38,64)(8,24,39,65)(9,13,40,66)(10,14,41,67)(11,15,42,68)(12,16,43,69)(25,55,90,74)(26,56,91,75)(27,57,92,76)(28,58,93,77)(29,59,94,78)(30,60,95,79)(31,49,96,80)(32,50,85,81)(33,51,86,82)(34,52,87,83)(35,53,88,84)(36,54,89,73), (1,28,38,87)(2,94,39,35)(3,30,40,89)(4,96,41,25)(5,32,42,91)(6,86,43,27)(7,34,44,93)(8,88,45,29)(9,36,46,95)(10,90,47,31)(11,26,48,85)(12,92,37,33)(13,54,72,79)(14,74,61,49)(15,56,62,81)(16,76,63,51)(17,58,64,83)(18,78,65,53)(19,60,66,73)(20,80,67,55)(21,50,68,75)(22,82,69,57)(23,52,70,77)(24,84,71,59), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,57,7,51)(2,50,8,56)(3,55,9,49)(4,60,10,54)(5,53,11,59)(6,58,12,52)(13,96,19,90)(14,89,20,95)(15,94,21,88)(16,87,22,93)(17,92,23,86)(18,85,24,91)(25,66,31,72)(26,71,32,65)(27,64,33,70)(28,69,34,63)(29,62,35,68)(30,67,36,61)(37,77,43,83)(38,82,44,76)(39,75,45,81)(40,80,46,74)(41,73,47,79)(42,78,48,84) );

G=PermutationGroup([[(1,17,44,70),(2,18,45,71),(3,19,46,72),(4,20,47,61),(5,21,48,62),(6,22,37,63),(7,23,38,64),(8,24,39,65),(9,13,40,66),(10,14,41,67),(11,15,42,68),(12,16,43,69),(25,55,90,74),(26,56,91,75),(27,57,92,76),(28,58,93,77),(29,59,94,78),(30,60,95,79),(31,49,96,80),(32,50,85,81),(33,51,86,82),(34,52,87,83),(35,53,88,84),(36,54,89,73)], [(1,28,38,87),(2,94,39,35),(3,30,40,89),(4,96,41,25),(5,32,42,91),(6,86,43,27),(7,34,44,93),(8,88,45,29),(9,36,46,95),(10,90,47,31),(11,26,48,85),(12,92,37,33),(13,54,72,79),(14,74,61,49),(15,56,62,81),(16,76,63,51),(17,58,64,83),(18,78,65,53),(19,60,66,73),(20,80,67,55),(21,50,68,75),(22,82,69,57),(23,52,70,77),(24,84,71,59)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,57,7,51),(2,50,8,56),(3,55,9,49),(4,60,10,54),(5,53,11,59),(6,58,12,52),(13,96,19,90),(14,89,20,95),(15,94,21,88),(16,87,22,93),(17,92,23,86),(18,85,24,91),(25,66,31,72),(26,71,32,65),(27,64,33,70),(28,69,34,63),(29,62,35,68),(30,67,36,61),(37,77,43,83),(38,82,44,76),(39,75,45,81),(40,80,46,74),(41,73,47,79),(42,78,48,84)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L···4Q4R4S4T6A6B6C6D6E12A12B12C12D12E···12N
order122222223444444444444···4444666661212121212···12
size1111466122111122224446···61212122224422224···4

48 irreducible representations

dim1111111111111112222222224
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4oD4C4oD4C4oD4C4oD12S3xC4oD4
kernelC42.93D6C4xDic6S3xC42C42:2S3C4xD12C23.8D6C23.9D6Dic3:D4C23.11D6Dic3.Q8D6.D4D6:Q8C4:C4:S3C4xC3:D4C3xC42:C2C42:C2C42C22:C4C4:C4C22xC4Dic3C12D6C4C2
# reps1111111111111211222144484

Matrix representation of C42.93D6 in GL6(F13)

1200000
0120000
001000
000100
000080
000008
,
100000
010000
008000
0011500
000080
000005
,
12120000
100000
008000
000800
000005
000080
,
110000
0120000
001800
0031200
000008
000050

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,11,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,5],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,5,0],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,1,3,0,0,0,0,8,12,0,0,0,0,0,0,0,5,0,0,0,0,8,0] >;

C42.93D6 in GAP, Magma, Sage, TeX

C_4^2._{93}D_6
% in TeX

G:=Group("C4^2.93D6");
// GroupNames label

G:=SmallGroup(192,1087);
// by ID

G=gap.SmallGroup(192,1087);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,100,675,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<